Search results
Results From The WOW.Com Content Network
Lead perchlorate trihydrate is produced by the reaction of lead(II) oxide, lead carbonate, or lead nitrate by perchloric acid: . Pb(NO 3) 2 + HClO 4 → Pb(ClO 4) 2 + HNO 3. The excess perchloric acid was removed by first heating the solution to 125 °C, then heating it under moist air at 160 °C to remove the perchloric acid by converting the acid to the dihydrate.
PbCl 2, PbBr 2 and PbI 2 are commonly used to produce donor centers. Other n-type doping agents such as Bi 2 Te 3 , TaTe 2 , MnTe 2 , will substitute for Pb and create uncharged vacant Pb-sites. These vacant sites are subsequently filled by atoms from the lead excess and the valence electrons of these vacant atoms will diffuse through crystal.
It is then converted to the ammonium salt (NH 4) 2 PbCl 6 by adding ammonium chloride (NH 4 Cl). Finally, the solution is treated with concentrated sulfuric acid H 2 SO 4, to separate out lead tetrachloride. This series of reactions is conducted at 0 °C. The following equations illustrate the reaction: PbCl 2 + 2HCl + Cl 2 → H 2 PbCl 6
Lead(II) chloride is the main precursor for organometallic derivatives of lead, such as plumbocenes. [11] The usual alkylating agents are employed, including Grignard reagents and organolithium compounds: 2 PbCl 2 + 4 RLi → R 4 Pb + 4 LiCl + Pb 2 PbCl 2 + 4 RMgBr → R 4 Pb + Pb + 4 MgBrCl 3 PbCl 2 + 6 RMgBr → R 3 Pb-PbR 3 + Pb + 6 MgBrCl [12]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
3 Cl 2 + 6 LiOH → 5 LiCl + LiClO 3 + 3 H 2 O. Lithium chlorate has one of the highest solubilities in water for a chemical compound. It is also a six-electron oxidant. Its electrochemical reduction is facilitated by acid, electrocatalysts and redox mediators. These properties make lithium chlorate a useful oxidant for high energy density flow ...
Chlorate is the common name of the ClO − 3 anion, whose chlorine atom is in the +5 oxidation state.The term can also refer to chemical compounds containing this anion, with chlorates being the salts of chloric acid.
Lead azide in its pure form was first prepared by Theodor Curtius in 1891. Due to sensitivity and stability concerns, the dextrinated form of lead azide (MIL-L-3055) was developed in the 1920s and 1930s with large scale production by DuPont Co beginning in 1932. [10]