Search results
Results From The WOW.Com Content Network
Lead perchlorate trihydrate is produced by the reaction of lead(II) oxide, lead carbonate, or lead nitrate by perchloric acid: . Pb(NO 3) 2 + HClO 4 → Pb(ClO 4) 2 + HNO 3. The excess perchloric acid was removed by first heating the solution to 125 °C, then heating it under moist air at 160 °C to remove the perchloric acid by converting the acid to the dihydrate.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
It is then converted to the ammonium salt (NH 4) 2 PbCl 6 by adding ammonium chloride (NH 4 Cl). Finally, the solution is treated with concentrated sulfuric acid H 2 SO 4, to separate out lead tetrachloride. This series of reactions is conducted at 0 °C. The following equations illustrate the reaction: PbCl 2 + 2HCl + Cl 2 → H 2 PbCl 6
Lead(II) chloride is the main precursor for organometallic derivatives of lead, such as plumbocenes. [11] The usual alkylating agents are employed, including Grignard reagents and organolithium compounds: 2 PbCl 2 + 4 RLi → R 4 Pb + 4 LiCl + Pb 2 PbCl 2 + 4 RMgBr → R 4 Pb + Pb + 4 MgBrCl 3 PbCl 2 + 6 RMgBr → R 3 Pb-PbR 3 + Pb + 6 MgBrCl [12]
3 Cl 2 + 6 LiOH → 5 LiCl + LiClO 3 + 3 H 2 O. Lithium chlorate has one of the highest solubilities in water for a chemical compound. It is also a six-electron oxidant. Its electrochemical reduction is facilitated by acid, electrocatalysts and redox mediators. These properties make lithium chlorate a useful oxidant for high energy density flow ...
Lead azide in its pure form was first prepared by Theodor Curtius in 1891. Due to sensitivity and stability concerns, the dextrinated form of lead azide (MIL-L-3055) was developed in the 1920s and 1930s with large scale production by DuPont Co beginning in 1932. [10]
Addition of hydrogen sulfide or sulfide salts to a solution containing a lead salt, such as PbCl 2, gives a black precipitate of lead sulfide. Pb 2+ + H 2 S → PbS↓ + 2 H + This reaction is used in qualitative inorganic analysis. The presence of hydrogen sulfide or sulfide ions may be tested using "lead acetate paper."
In chemistry, plumbite is the PbO 2− 2 oxyanion or hydrated forms, or any salt containing this anion. In these salts, lead is in the oxidation state +2. It is the traditional term for the IUPAC name plumbate(II). For example, lead(II) oxide (PbO) dissolves in alkali to form salts containing the HPbO − 2 anion (hydrogen plumbite): [1] PbO ...