Ad
related to: what are transcriptional activator proteins composed of simple
Search results
Results From The WOW.Com Content Network
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
TAL (transcription activator-like) effectors (often referred to as TALEs, but not to be confused with the three amino acid loop extension homeobox class of proteins) are proteins secreted by some β-and γ-proteobacteria. [1] Most of these are Xanthomonads.
They are made by fusing a TAL effector DNA-binding domain to a DNA cleavage domain (a nuclease which cuts DNA strands). Transcription activator-like effectors (TALEs) can be engineered to bind to practically any desired DNA sequence, so when combined with a nuclease, DNA can be cut at specific locations. [ 1 ]
transcription factor – a protein that binds to DNA and regulates gene expression by promoting or suppressing transcription; transcriptional regulation – controlling the rate of gene transcription for example by helping or hindering RNA polymerase binding to DNA; upregulation, activation, or promotion – increase the rate of gene transcription
The transactivation domain or trans-activating domain (TAD) is a transcription factor scaffold domain which contains binding sites for other proteins such as transcription coregulators. These binding sites are frequently referred to as activation functions (AFs). [1] TADs are named after their amino acid composition.
Activator protein 1 (AP-1) is a transcription factor that regulates gene expression in response to a variety of stimuli, including cytokines, growth factors, stress, and bacterial and viral infections. [1] AP-1 controls a number of cellular processes including differentiation, proliferation, and apoptosis. [2]
A transcription factor is a protein that binds to specific DNA sequences (enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase.
Figure 1. Example of a natural transcription factor up-regulating gene expression. 1. The transcription factors (labeled activator proteins) bind to their specific DNA sequence (labeled enhancers). 2. The transcription factors recruit other proteins and transcription factors to form a protein complex which binds to the gene promoter. 3.