Ads
related to: dihedral angle of polyhedron practice questions worksheetgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex) Tetrahedron {3,3} (3.3.3) arccos ( 1 / 3 ) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = π / 2 90° Octahedron {3,4} (3.3.3.3) arccos (- 1 / 3 ) 109.471° Dodecahedron {5,3} (5.5.5) arccos ...
An angle of 0° means the face normal vectors are antiparallel and the faces overlap each other, which implies that it is part of a degenerate polyhedron. An angle of 180° means the faces are parallel, as in a tiling. An angle greater than 180° exists on concave portions of a polyhedron. Every dihedral angle in an edge-transitive polyhedron ...
This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...
Its dihedral angle between two rhombi is 120°. [2] The rhombic dodecahedron is a Catalan solid, meaning the dual polyhedron of an Archimedean solid, the cuboctahedron; they share the same symmetry, the octahedral symmetry. [2] It is face-transitive, meaning the symmetry group of the solid acts transitively on its set of faces.
The dihedral angle of a truncated icosahedron between adjacent hexagonal faces is approximately 138.18°, and that between pentagon-to-hexagon is approximately 142.6°. [ 4 ] The truncated icosahedron is an Archimedean solid , meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in ...
These symmetries double to 24, 48, 120 respectively for the full reflectional groups. The reflection symmetries have 6, 9, and 15 mirrors respectively. The octahedral symmetry, [4,3] can be seen as the union of 6 tetrahedral symmetry [3,3] mirrors, and 3 mirrors of dihedral symmetry Dih 2, [2,2].
Matthias Görner has conjectured that, when a tensor of this form is realizable as a Dehn invariant, it can be realized by a polyhedron having a single dihedral angle of length and dihedral angle , with all other angles right angles, but this is known only for a limited set of dihedral angles. [29]
In fact, all the duals of the uniform polyhedra have a single dihedral angle. This is a consequence of the fact that their duals (the uniform polyhedra) have all regular faces. (Thanks to Rckrone for explaining it to me at WP:RD/MATH.) Even the two pseudo-uniform polyhedra work. Double sharp 04:42, 6 May 2012 (UTC)