Search results
Results From The WOW.Com Content Network
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some Q ( d ) {\displaystyle \mathbf {Q} ({\sqrt {d}})} where d {\displaystyle d} is a (uniquely defined) square-free integer different from 0 {\displaystyle 0} and 1 {\displaystyle 1} .
A quadric is said to be non-degenerate if the matrix is invertible. A non-degenerate quadric is non-singular in the sense that its projective completion has no singular point (a cylinder is non-singular in the affine space, but it is a degenerate quadric that has a singular point at infinity).
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
The quadratic programming problem with n variables and m constraints can be formulated as follows. [2] Given: a real-valued, n-dimensional vector c, an n×n-dimensional real symmetric matrix Q, an m×n-dimensional real matrix A, and; an m-dimensional real vector b, the objective of quadratic programming is to find an n-dimensional vector x ...
Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units. [1]
Live-updating Maine (D) and Puerto Rico (R) results
A quadratic closure of a field F is a quadratically closed field containing F which embeds in any quadratically closed field containing F. A quadratic closure for any given F may be constructed as a subfield of the algebraic closure F alg of F, as the union of all iterated quadratic extensions of F in F alg. [4]