Search results
Results From The WOW.Com Content Network
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
If we draw both circles, two new points are created at their intersections. Drawing lines between the two original points and one of these new points completes the construction of an equilateral triangle. Therefore, in any geometric problem we have an initial set of symbols (points and lines), an algorithm, and some results.
Following the steps for drawing the Mohr circle for this particular state of stress, we first draw a Cartesian coordinate system (,) with the -axis upward. We then plot two points A(50,40) and B(-10,-40), representing the state of stress at plane A and B as show in both Figure 8 and Figure 9.
Similarly, the y intercepts are found by setting x equal to 0 in the equation of the curve and solving for y. Determine the symmetry of the curve. If the exponent of x is always even in the equation of the curve then the y-axis is an axis of symmetry for the curve.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality In mathematics , Jensen's inequality , named after the Danish mathematician Johan Jensen , relates the value of a convex function of an integral to the integral of the convex function.
In mathematics, an inequation is a statement that either an inequality (relations "greater than" and "less than", < and >) or a relation "not equal to" (≠) holds between two values. [ 1 ] [ 2 ] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between the two sides , indicating ...