When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The concept of almost sure convergence does not come from a topology on the space of random variables. This means there is no topology on the space of random variables such that the almost surely convergent sequences are exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure convergence.

  3. Almost surely - Wikipedia

    en.wikipedia.org/wiki/Almost_surely

    Convergence of random variables, for "almost sure convergence" With high probability; Cromwell's rule, which says that probabilities should almost never be set as zero or one; Degenerate distribution, for "almost surely constant" Infinite monkey theorem, a theorem using the aforementioned terms; List of mathematical jargon

  4. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    If X n are independent random variables assuming value one with probability 1/n and zero otherwise, then X n converges to zero in probability but not almost surely. This can be verified using the Borel–Cantelli lemmas.

  5. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    On the right-hand side, the first term converges to zero as n → ∞ for any fixed δ, by the definition of convergence in probability of the sequence {X n}. The second term converges to zero as δ → 0, since the set B δ shrinks to an empty set. And the last term is identically equal to zero by assumption of the theorem.

  6. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().

  7. Fatou's lemma - Wikipedia

    en.wikipedia.org/wiki/Fatou's_lemma

    because the countable union of the exceptional sets of probability zero is again a null set. Using the definition of X, its representation as pointwise limit of the Y k, the monotone convergence theorem for conditional expectations, the last inequality, and the definition of the limit inferior, it follows that almost surely

  8. Kolmogorov's zero–one law - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_zero–one_law

    In probability theory, Kolmogorov's zero–one law, named in honor of Andrey Nikolaevich Kolmogorov, specifies that a certain type of event, namely a tail event of independent σ-algebras, will either almost surely happen or almost surely not happen; that is, the probability of such an event occurring is zero or one.

  9. Almost everywhere - Wikipedia

    en.wikipedia.org/wiki/Almost_everywhere

    The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, [ 1 ] [ 2 ] or equivalently, if the set of elements for which ...