Search results
Results From The WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
The citric acid cycle is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, acetyl-CoA is produced from the pyruvate molecules created from glycolysis. Once acetyl-CoA is formed, aerobic or anaerobic respiration can occur. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to ...
Glycolysis takes place in the cytoplasm of normal body cells, or the sarcoplasm of muscle cells. The Krebs cycle – This is the second stage, and the products of this stage of the aerobic system are a net production of one ATP, one carbon dioxide molecule, three reduced NAD + molecules, and one reduced flavin adenine dinucleotide (FAD
The Krebs cycle, also known as the TCA cycle or Citric Acid cycle, is a biochemical pathway that facilitates the breakdown of glucose in a cell. Both citrate and malate involved in the citrate-malate shuttle are necessary intermediates of the Krebs cycle. [ 9 ]
Spatial movements occur between mitochondria and cytosol and chemical transformations create various Krebs cycle intermediates. In all variants, pyruvate is imported into the mitochondrion for processing through part of the Krebs cycle. In addition to pyruvate, alpha-ketoglutarate may also be imported.
The concentrations of ions such as sodium and potassium in the cytosol are different to those in the extracellular fluid; these differences in ion levels are important in processes such as osmoregulation, cell signaling, and the generation of action potentials in excitable cells such as endocrine, nerve and muscle cells. The cytosol also ...
As PEPCK acts at the junction between glycolysis and the Krebs cycle, it causes decarboxylation of a C 4 molecule, creating a C 3 molecule. As the first committed step in gluconeogenesis, PEPCK decarboxylates and phosphorylates oxaloacetate (OAA) for its conversion to PEP, when GTP is present.
The purine nucleotide cycle occurs in the cytosol (intracellular fluid) of the sarcoplasm of skeletal muscle, and in the myocyte's cytosolic compartment of the cytoplasm of cardiac and smooth muscle. The cycle occurs when ATP reservoirs run low (ADP > ATP), such as strenuous exercise, fasting or starvation. [5] [9]