Search results
Results From The WOW.Com Content Network
cAMP represented in three ways Adenosine triphosphate. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms ...
In a cAMP-dependent pathway, the activated G s alpha subunit binds to and activates an enzyme called adenylyl cyclase, which, in turn, catalyzes the conversion of ATP into cyclic adenosine monophosphate (cAMP). [5] Increases in concentration of the second messenger cAMP may lead to the activation of cyclic nucleotide-gated ion channels [6]
In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase [1] whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism.
Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction: ATP = 3′,5′-cyclic AMP + diphosphate. It has key regulatory roles in essentially all cells. [2]
5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme (EC 2.7.11.31) that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low.
The activated α subunit activates phospholipase C, which hydrolyzes membrane bound phosphatidylinositol 4,5-bisphosphate (PIP 2), resulting in the formation of secondary messengers diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP 3). [10] IP 3 binds to calcium pumps on ER, transporting Ca 2+, another second messenger, into the cytoplasm.
The signal to activate CRP is the binding of cyclic AMP. Binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP-binding domain to the C-terminal domain of the protein, which is responsible for interaction with specific sequences of DNA. [6]
Epinephrine binds to a receptor protein that activates adenylate cyclase. The latter enzyme causes the formation of cyclic AMP from ATP ; two molecules of cyclic AMP bind to the regulatory subunit of protein kinase A, which activates it allowing the catalytic subunit of protein kinase A to dissociate from the assembly and to phosphorylate other ...