When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tidal force - Wikipedia

    en.wikipedia.org/wiki/Tidal_force

    Figure 1: Tidal interaction between the spiral galaxy NGC 169 and a smaller companion [1]. The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction.

  3. Theory of tides - Wikipedia

    en.wikipedia.org/wiki/Theory_of_tides

    High and low tide in the Bay of Fundy. The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans (especially Earth's oceans) under the gravitational loading of another astronomical body or bodies (especially the Moon and Sun).

  4. Tidal tensor - Wikipedia

    en.wikipedia.org/wiki/Tidal_tensor

    The most common example of tides is the tidal force around a spherical body (e.g., a planet or a moon). Here we compute the tidal tensor for the gravitational field outside an isolated spherically symmetric massive object. According to Newton's gravitational law, the acceleration a at a distance r from a central mass m is

  5. Tidal acceleration - Wikipedia

    en.wikipedia.org/wiki/Tidal_acceleration

    Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite (e.g. the Moon) and the primary planet that it orbits (e.g. Earth). The acceleration causes a gradual recession of a satellite in a prograde orbit (satellite moving to a higher orbit, away from the primary body, with a lower orbital velocity and hence a ...

  6. Earth tide - Wikipedia

    en.wikipedia.org/wiki/Earth_tide

    Its main component has meter-level amplitude at periods of about 12 hours and longer. The largest body tide constituents are semi-diurnal, but there are also significant diurnal, semi-annual, and fortnightly contributions. Though the gravitational force causing earth tides and ocean tides is the same, the responses are quite different.

  7. Amphidromic point - Wikipedia

    en.wikipedia.org/wiki/Amphidromic_point

    Tides are generated as a result of gravitational attraction by the Sun and Moon. [8] This gravitational attraction results in a tidal force that acts on the ocean. [8] The ocean reacts to this external forcing by generating, in particular relevant for describing tidal behaviour, Kelvin waves and Poincaré waves (also known as Sverdrup waves). [8]

  8. Geodesic deviation - Wikipedia

    en.wikipedia.org/wiki/Geodesic_deviation

    Mathematically, the tidal force in general relativity is described by the Riemann curvature tensor, [1] and the trajectory of an object solely under the influence of gravity is called a geodesic. The geodesic deviation equation relates the Riemann curvature tensor to the relative acceleration of two neighboring geodesics.

  9. Category:Tidal forces - Wikipedia

    en.wikipedia.org/wiki/Category:Tidal_forces

    Articles related to tidal forces -- that is, differential gravitational acceleration and its effects. For articles related specifically to tides on ( Earth ), see Category:Tides . Subcategories