When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular symmetry - Wikipedia

    en.wikipedia.org/wiki/Molecular_symmetry

    In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties , such as whether or not it has a dipole moment , as well ...

  3. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    A molecule may be nonpolar either when there is an equal sharing of electrons between the two atoms of a diatomic molecule or because of the symmetrical arrangement of polar bonds in a more complex molecule. For example, boron trifluoride (BF 3) has a trigonal planar arrangement of three polar bonds at 120°. This results in no overall dipole ...

  4. Trigonal planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_planar_molecular...

    Structure of boron trifluoride, an example of a molecule with trigonal planar geometry.. In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. [1]

  5. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group T d, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules ...

  6. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.

  7. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    In an ionic bond, oppositely charged ions are bonded by electrostatic attraction. [19] It is possible to describe ionic bonds with molecular orbital theory by treating them as extremely polar bonds. Their bonding orbitals are very close in energy to the atomic orbitals of the anion. They are also very similar in character to the anion's atomic ...

  8. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    Most commonly, four bonds to a central atom result in tetrahedral or, less commonly, square planar geometry. The seesaw geometry occurs when a molecule has a steric number of 5, with the central atom being bonded to 4 other atoms and 1 lone pair (AX 4 E 1 in AXE notation ).

  9. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands. In an AX 3 E 2 molecule, the two lone pairs occupy two equatorial positions, and the three ligand atoms occupy the two axial positions as well as one equatorial position.

  1. Related searches why are symmetrical molecules polar bonds important to the environment class 10

    molecular symmetry pdfpolarity of a covalent bond
    polarity of a molecular moleculepolar vs nonpolar properties
    molecular symmetry axis