Search results
Results From The WOW.Com Content Network
The human body's rate of iron absorption appears to respond to a variety of interdependent factors, including total iron stores, the extent to which the bone marrow is producing new red blood cells, the concentration of hemoglobin in the blood, and the oxygen content of the blood.
Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease.
Iron is a mineral that is crucial for optimal health and well-being. Found naturally in many foods and dietary supplements, it is a key component of hemoglobin, the part of red blood cells ...
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
Roughly 5 grams of iron are present in the human body and is the most abundant trace metal. [1] It is absorbed in the intestine as heme or non-heme iron depending on the food source. Heme iron is derived from the digestion of hemoproteins in meat. [4] Non-heme iron is mainly derived from plants and exist as iron(II) or iron(III) ions. [4]
The human body has no controlled mechanism for excretion of iron. [23] This can lead to iron overload problems in patients treated with blood transfusions, as, for instance, with β-thalassemia. Iron is actually excreted in urine [24] and is also concentrated in bile [25] which is excreted in feces. [26]
Hepcidin is a protein that in humans is encoded by the HAMP gene. Hepcidin is a key regulator of the entry of iron into the circulation in mammals. [6]During conditions in which the hepcidin level is abnormally high, such as inflammation, serum iron falls due to iron trapping within macrophages and liver cells and decreased gut iron absorption.
Iron in parenteral iron preparation needs to be released by the cleavage of the surrounding complex by macrophages. [4] After reaching the bloodstream, it becomes a part of the endogenous iron pool and establishes normal human iron distribution, metabolism, and elimination. [5] Iron poisoning is a fatal medical condition.