Search results
Results From The WOW.Com Content Network
This relationship is true regardless of the base of the logarithmic or exponential function: If is normally distributed, then so is for any two positive numbers , . Likewise, if e Y {\displaystyle \ e^{Y}\ } is log-normally distributed, then so is a Y , {\displaystyle \ a^{Y}\ ,} where 0 < a ≠ 1 {\displaystyle 0<a\neq 1} .
The product of independent random variables X and Y may belong to the same family of distribution as X and Y: Bernoulli distribution and log-normal distribution. Example: If X 1 and X 2 are independent log-normal random variables with parameters (μ 1, σ 2 1) and (μ 2, σ 2 2) respectively, then X 1 X 2 is a log-normal random variable with ...
The log-likelihood is also particularly useful for exponential families of distributions, which include many of the common parametric probability distributions. The probability distribution function (and thus likelihood function) for exponential families contain products of factors involving exponentiation. The logarithm of such a function is a ...
In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} .
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
On the other hand, if the natural logarithm is defined as the inverse of the (natural) exponential function, then the derivative (for x > 0) can be found by using the properties of the logarithm and a definition of the exponential function. From the definition of the number = (+) /, the exponential function can be defined as ...
The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.
A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution, and X i, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then