When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...

  3. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).

  4. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.

  6. Cramér's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_decomposition...

    Let a random variable ξ be normally distributed and admit a decomposition as a sum ξ=ξ 1 +ξ 2 of two independent random variables. Then the summands ξ 1 and ξ 2 are normally distributed as well. A proof of Cramér's decomposition theorem uses the theory of entire functions.

  7. Cramér's theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_theorem

    Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable Cramér's theorem (large deviations) , a fundamental result in the theory of large deviations Cramer's theorem (algebraic curves) , a result regarding the necessary number of points to determine a curve

  8. Chernoff bound - Wikipedia

    en.wikipedia.org/wiki/Chernoff_bound

    When the random variables are also identically distributed , the Chernoff bound for the sum reduces to a simple rescaling of the single-variable Chernoff bound. That is, the Chernoff bound for the average of n iid variables is equivalent to the nth power of the Chernoff bound on a single variable (see Cramér's theorem).

  9. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.