When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    For functions on the real line, one way to define the limit of a function is in terms of the limit of sequences. (This definition is usually attributed to Eduard Heine .) In this setting: lim x → a f ( x ) = L {\displaystyle \lim _{x\to a}f(x)=L} if, and only if, for all sequences x n (with x n not equal to a for all n ) converging to a the ...

  3. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]

  5. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    On the other hand, the function / cannot be continuously extended, because the function approaches as approaches 0 from below, and + as approaches 0 from above, i.e., the function not converging to the same value as its independent variable approaching to the same domain element from both the positive and negative value sides.

  6. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    where is the limit as x approaches the value a from the left (from lesser values), and + is the limit as x approaches a from the right. For example, if ƒ(x) = x/(x–1), the numerator approaches 1 and the denominator approaches 0 as x approaches 1. So

  7. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    The relation is an equivalence relation on the set of functions of x; the functions f and g are said to be asymptotically equivalent. The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers. The same notation is also used for other ways of passing to a limit: e.g. x → 0, x ↓ ...

  8. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  9. One-sided limit - Wikipedia

    en.wikipedia.org/wiki/One-sided_limit

    In calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right. [ 1 ] [ 2 ] The limit as x {\displaystyle x} decreases in value approaching a {\displaystyle a} ( x {\displaystyle x} approaches a {\displaystyle a} "from the right" [ 3 ...