Search results
Results From The WOW.Com Content Network
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .
The von Neumann cardinal assignment is a cardinal assignment that uses ordinal numbers. For a well-orderable set U, we define its cardinal number to be the smallest ordinal number equinumerous to U, using the von Neumann definition of an ordinal number. More precisely:
The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)
The use of Scott's trick for cardinal numbers shows how the method is typically employed. The initial definition of a cardinal number is an equivalence class of sets, where two sets are equivalent if there is a bijection between them.
In modern set theory, we usually use the Von Neumann cardinal assignment, which uses the theory of ordinal numbers and the full power of the axioms of choice and replacement. Cardinal assignments do need the full axiom of choice, if we want a decent cardinal arithmetic and an assignment for all sets.
The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.