When.com Web Search

  1. Ad

    related to: classify polynomial by degree calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  3. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]

  4. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on. Historically, polynomial models are among the most frequently used empirical models for curve fitting.

  6. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    More concretely, an n-ary quadratic form over a field K is a homogeneous polynomial of degree 2 in n variables with coefficients in K: (, …,) = = =,. This formula may be rewritten using matrices: let x be the column vector with components x 1 , ..., x n and A = ( a ij ) be the n × n matrix over K whose entries are the coefficients of q .

  7. Multilinear polynomial - Wikipedia

    en.wikipedia.org/wiki/Multilinear_polynomial

    The resulting polynomial is not a linear function of the coordinates (its degree can be higher than 1), but it is a linear function of the fitted data values. The determinant, permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns).

  8. Monomial order - Wikipedia

    en.wikipedia.org/wiki/Monomial_order

    One can simplify the classification of monomial orders by assuming that the indeterminates are named x 1, x 2, x 3, ... in decreasing order for the monomial order considered, so that always x 1 > x 2 > x 3 > .... (If there should be infinitely many indeterminates, this convention is incompatible with the condition of being a well ordering, and ...

  9. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.