Search results
Results From The WOW.Com Content Network
Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number. If the ...
The SVG defines the even–odd rule by saying: This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in any direction and counting the number of path segments from the given shape that the ray crosses. If this number is odd, the point is inside; if even, the point is outside.
The odd–even sort algorithm correctly sorts this data in passes. (A pass here is defined to be a full sequence of odd–even, or even–odd comparisons. The passes occur in order pass 1: odd–even, pass 2: even–odd, etc.) Proof: This proof is based loosely on one by Thomas Worsch. [6]
If the point is on the inside of the polygon then it will intersect the edge an odd number of times. The status of a point on the edge of the polygon depends on the details of the ray intersection algorithm. This algorithm is sometimes also known as the crossing number algorithm or the even–odd rule algorithm, and was known as early as 1962. [3]
Strachey's method of construction of singly even magic square of order n = 4k + 2. 1. Divide the grid into 4 quarters each having n 2 /4 cells and name them crosswise thus
It considers regions with odd winding number to be inside the polygon; this is known as the even–odd rule. It takes two lists of polygons as input. In its original form, the algorithm is divided into three phases: In the first phase, pairwise intersections between edges of the polygons are computed.
A curve (top) is filled according to two rules: the even-odd rule (left), and the non-zero winding rule (right). In each case an arrow shows a ray from a point P heading out of the curve. In the even-odd case, the ray is intersected by two lines, an even number; therefore P is concluded to be 'outside' the curve.
Batcher's odd–even mergesort [1] is a generic construction devised by Ken Batcher for sorting networks of size O(n (log n) 2) and depth O((log n) 2), where n is the number of items to be sorted. Although it is not asymptotically optimal, Knuth concluded in 1998, with respect to the AKS network that "Batcher's method is much better, unless n ...