When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Bride's Chair - Wikipedia

    en.wikipedia.org/wiki/Bride's_Chair

    The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The celebrated Pythagorean theorem (book I, proposition 47) states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

  5. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...

  6. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    Pythagorean theorem: It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: [6]

  7. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    By the Pythagorean theorem we have = + and = + according to the figure at the right. Subtracting these yields a 2 − b 2 = c 2 − 2 c d . {\displaystyle a^{2}-b^{2}=c^{2}-2cd.} This equation allows us to express ⁠ d {\displaystyle d} ⁠ in terms of the sides of the triangle: d = − a 2 + b 2 + c 2 2 c . {\displaystyle d={\frac {-a^{2}+b ...

  8. Pythagoras - Wikipedia

    en.wikipedia.org/wiki/Pythagoras

    The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). Although Pythagoras is most famous today for his alleged mathematical discoveries, [132] [207] classical historians dispute whether he himself ever actually made any significant contributions to the field.

  9. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.