Search results
Results From The WOW.Com Content Network
For example, they imply that one kilometre is exactly 0.54 nautical miles. Using official modern definitions, one nautical mile is exactly 1.852 kilometres, [4] which implies that 1 kilometre is about 0.539 956 80 nautical miles. [5] This modern ratio differs from the one calculated from the original definitions by less than one part in 10,000.
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):
The Kuhn length is a theoretical treatment, developed by Werner Kuhn, in which a real polymer chain is considered as a collection of Kuhn segments each with a Kuhn length . Each Kuhn segment can be thought of as if they are freely jointed with each other.
The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure). The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This is a triangle whose three angles are in the ratio 1 : 2 : 3 and respectively measure 30° ( π / 6 ), 60° ( π / 3 ), and 90° ( π / 2 ). The sides are in the ratio 1 : √ 3 : 2. The proof of this fact is clear using trigonometry. The geometric proof is: Draw an equilateral triangle ABC with side length 2 and with ...