When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    For pairs of objects that are not both points, the distance can most simply be defined as the smallest distance between any two points from the two objects, although more complicated generalizations from points to sets such as Hausdorff distance are also commonly used. [6] Formulas for computing distances between different types of objects include:

  3. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    For two objects and having descriptors, the similarity is defined as: = = =, where the w i j k {\displaystyle w_{ijk}} are non-negative weights usually set to 1 {\displaystyle 1} [ 2 ] and s i j k {\displaystyle s_{ijk}} is the similarity between the two objects regarding their k {\displaystyle k} -th variable.

  4. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  5. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  6. Distance - Wikipedia

    en.wikipedia.org/wiki/Distance

    A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.

  7. Hausdorff distance - Wikipedia

    en.wikipedia.org/wiki/Hausdorff_distance

    Similarly, an area of the binary target image is treated as a set of points. The algorithm then tries to minimize the Hausdorff distance between the template and some area of the target image. The area in the target image with the minimal Hausdorff distance to the template, can be considered the best candidate for locating the template in the ...

  8. Distance between two parallel lines - Wikipedia

    en.wikipedia.org/wiki/Distance_between_two...

    the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line = /. This distance can be found by first solving the linear systems {= + = /, and {= + = /, to get the coordinates of the intersection points. The solutions to the linear systems are the points

  9. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...