Ad
related to: dividing polynomials long division
Search results
Results From The WOW.Com Content Network
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones.
In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
In mathematics the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm .
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
Poison Profits. A HuffPost / WNYC investigation into lead contamination in New York City
The polynomial remainder theorem may be used to evaluate () by calculating the remainder, . Although polynomial long division is more difficult than evaluating the function itself, synthetic division is computationally easier. Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem.