When.com Web Search

  1. Ads

    related to: dividing polynomials practice

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...

  3. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  4. Division polynomials - Wikipedia

    en.wikipedia.org/wiki/Division_polynomials

    In mathematics the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm .

  5. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .

  6. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Like for the integers, the Euclidean division of the polynomials may be computed by the long division algorithm. This algorithm is usually presented for paper-and-pencil computation, but it works well on computers when formalized as follows (note that the names of the variables correspond exactly to the regions of the paper sheet in a pencil ...

  7. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product by of a polynomial in of degree less than the degree of .