Ad
related to: xylem transport unidirectional vs phloem air water
Search results
Results From The WOW.Com Content Network
Xylem is one of the two types of transport tissue in vascular plants, the other being phloem; both of these are part of the vascular bundle. The basic function of the xylem is to transport water upward from the roots to parts of the plants such as stems and leaves, but it also transports nutrients .
The movement in phloem is multidirectional, whereas, in xylem cells, it is unidirectional (upward). [citation needed] [15] After the growth period, when the meristems are dormant, the leaves are sources, and storage organs are sinks. Developing seed-bearing organs (such as fruit) are always sinks. Because of this multi-directional flow, coupled ...
A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. There is also a tissue between xylem and phloem, which is the cambium.
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
The cells in vascular tissue are typically long and slender. Since the xylem and phloem function in the conduction of water, minerals, and nutrients throughout the plant, it is not surprising that their form should be similar to pipes. The individual cells of phloem are connected end-to-end, just as the sections of a pipe might be.
In general, bulk flow in plant biology typically refers to the movement of water from the soil up through the plant to the leaf tissue through xylem, but can also be applied to the transport of larger solutes (e.g. sucrose) through the phloem.
Xylem is the water-conducting tissue, and the secondary xylem provides the raw material for the forest products industry. [25] Xylem and phloem tissues each play a part in the conduction processes within plants. Sugars are conveyed throughout the plant in the phloem; water and other nutrients pass through the xylem.
The phloem sugar is consumed by cellular respiration or converted into starch, which is insoluble and exerts no osmotic effect. With much of the sucrose having been removed, the water exits the phloem by osmosis or is drawn by transpiration into nearby xylem vessels, lowering the turgor pressure within the phloem. [4]