Search results
Results From The WOW.Com Content Network
Paraboloid of revolution. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid made by a plane parallel to the axis of symmetry is ...
A parabolic (or paraboloid or paraboloidal) reflector (or dish or mirror) is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid , that is, the surface generated by a parabola revolving around its axis.
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates.They possess elliptic paraboloids as one-coordinate surfaces.
Semicircular area [3] ... Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center ...
The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).
If both curves are contained in a common plane, the translation surface is planar (part of a plane). This case is generally ignored. ellipt. paraboloid, parabol. cylinder, hyperbol. paraboloid as translation surface translation surface: the generating curves are a sine arc and a parabola arc Shifting a horizontal circle along a helix. Simple ...
A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity.
A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007).