When.com Web Search

  1. Ad

    related to: data compression in computer network ppt slides pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    It achieved compression of image and audio data to 43.4% and 16.4% of their original sizes, respectively. There is, however, some reason to be concerned that the data set used for testing overlaps the LLM training data set, making it possible that the Chinchilla 70B model is only an efficient compression tool on data it has already been trained on.

  3. Shannon's source coding theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon's_source_coding...

    In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...

  4. Data compression ratio - Wikipedia

    en.wikipedia.org/wiki/Data_compression_ratio

    Lossless compression of digitized data such as video, digitized film, and audio preserves all the information, but it does not generally achieve compression ratio much better than 2:1 because of the intrinsic entropy of the data. Compression algorithms which provide higher ratios either incur very large overheads or work only for specific data ...

  5. LZ77 and LZ78 - Wikipedia

    en.wikipedia.org/wiki/LZ77_and_LZ78

    To spot matches, the encoder must keep track of some amount of the most recent data, such as the last 2 KB, 4 KB, or 32 KB. The structure in which this data is held is called a sliding window, which is why LZ77 is sometimes called sliding-window compression. The encoder needs to keep this data to look for matches, and the decoder needs to keep ...

  6. Coding theory - Wikipedia

    en.wikipedia.org/wiki/Coding_theory

    Data compression which explicitly tries to minimize the average length of messages according to a particular assumed probability model is called entropy encoding. Various techniques used by source coding schemes try to achieve the limit of entropy of the source.

  7. Brotli - Wikipedia

    en.wikipedia.org/wiki/Brotli

    Brotli is a lossless data compression algorithm developed by Google. It uses a combination of the general-purpose LZ77 lossless compression algorithm, Huffman coding and 2nd-order context modelling. Brotli is primarily used by web servers and content delivery networks to compress HTTP content, making internet websites

  8. Prediction by partial matching - Wikipedia

    en.wikipedia.org/wiki/Prediction_by_partial_matching

    Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction. PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also be used to cluster data into predicted groupings in cluster analysis.

  9. Lossless compression - Wikipedia

    en.wikipedia.org/wiki/Lossless_compression

    Most lossless compression programs do two things in sequence: the first step generates a statistical model for the input data, and the second step uses this model to map input data to bit sequences in such a way that "probable" (i.e. frequently encountered) data will produce shorter output than "improbable" data.