When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. [ 1 ]

  3. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

  4. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    It was the first implementation of an Artificial Intelligence (AI) machine. It differs from the Perceptron which is a software architecture proposed in 1943 by Warren McCulloch and Walter Pitts, [1] which was also employed in Mark I, and enhancements of which have continued to be an integral part of cutting edge AI technologies like the ...

  5. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The Gamba perceptron machine was similar to the perceptron machine of Rosenblatt. Its input were images. The image is passed through binary masks (randomly generated) in parallel. Behind each mask is a photoreceiver that fires if the input, after masking, is bright enough. The second layer is made of standard perceptron units.

  6. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, [1] making it the first kernel classification learner. [2]

  7. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  8. Frank Rosenblatt - Wikipedia

    en.wikipedia.org/wiki/Frank_Rosenblatt

    The first theorem states that elementary perceptrons can solve any classification problem if there are no discrepancies in the training set (and sufficiently many independent A-elements). The fourth theorem states convergence of learning algorithm if this realisation of elementary perceptron can solve the problem.

  9. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".