When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    One of the later experiments distinguished a square from a circle printed on paper. The shapes were perfect and their sizes fixed; the only variation was in their position and orientation. The Mark I Perceptron achieved 99.8% accuracy on a test dataset with 500 neurons in a single layer. The size of the training dataset was 10,000 example ...

  3. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Cite this page; Get shortened URL; Download QR code; ... It can be derived as the backpropagation algorithm for a single-layer neural ... The perceptron uses the ...

  5. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions. Such an f {\displaystyle f} can also be approximated by a network of greater depth by using the same construction for the first layer and approximating the identity function with later layers.

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Neurons of one layer connect only to neurons of the immediately preceding and immediately following layers. The layer that receives external data is the input layer. The layer that produces the ultimate result is the output layer. In between them are zero or more hidden layers. Single layer and unlayered networks are also used.

  7. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it. [ 2 ] [ 3 ] [ 1 ] [ 4 ] [ 5 ] It was developed by professor Bernard Widrow and his doctoral student Marcian Hoff at Stanford University in 1960.

  8. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron is a neural net developed by psychologist Frank Rosenblatt in 1958 and is one of the most famous machines of its period. [11] [12] In 1960, Rosenblatt and colleagues were able to show that the perceptron could in finitely many training cycles learn any task that its parameters could embody.

  9. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...