When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dunkerley's method - Wikipedia

    en.wikipedia.org/wiki/Dunkerley's_Method

    Dunkerley's method [1] [2] is used in mechanical engineering to determine the critical speed of a shaft-rotor system. Other methods include the Rayleigh–Ritz method.

  3. Critical speed - Wikipedia

    en.wikipedia.org/wiki/Critical_speed

    Many practical applications suggest as good practice that the maximum operating speed should not exceed 75% of the critical speed [citation needed]; however, some systems operate above the first critical speed, or supercritically. In such cases, it is important to accelerate the shaft through the first natural frequency quickly so that large ...

  4. Campbell diagram - Wikipedia

    en.wikipedia.org/wiki/Campbell_diagram

    Analysis shows that there are well-damped critical speed at lower speed range. Another critical speed at mode 4 is observed at 7810 rpm (130 Hz) in dangerous vicinity of nominal shaft speed, but it has 30% damping - enough to safely ignore it. Analytically computed values of eigenfrequencies as a function of the shaft's rotation speed. This ...

  5. DN factor - Wikipedia

    en.wikipedia.org/wiki/DN_Factor

    N = bearing speed. This is the maximum amount of revolutions per minute (RPM) that the bearing will move. The DN factor of a bearing is obtained by multiplying the median diameter (A + B)/2 by RPM, and sometimes by a correction factor. [2] [6] This correction factor may vary from manufacturer to manufacturer.

  6. Sommerfeld number - Wikipedia

    en.wikipedia.org/wiki/Sommerfeld_number

    S is the Sommerfeld Number or bearing characteristic number r is the shaft radius c is the radial clearance μ is the absolute viscosity of the lubricant N is the speed of the rotating shaft in rev/s P is the load per unit of projected bearing area. The second part of the equation is seen to be the Hersey number.

  7. Rotordynamics - Wikipedia

    en.wikipedia.org/wiki/Rotordynamics

    The critical speed of a rotating machine occurs when the rotational speed matches its natural frequency. The lowest speed at which the natural frequency is first encountered is called the first critical speed, but as the speed increases, additional critical speeds are seen which are the multiples of the natural frequency.

  8. Fluid bearing - Wikipedia

    en.wikipedia.org/wiki/Fluid_bearing

    Such bearings should be equipped with the shaft position control system, which adjusts the fluid pressure and consumption according to the rotation speed and shaft load. [4] In fluid-dynamic bearings, the bearing rotation sucks the fluid on to the inner surface of the bearing, forming a lubricating wedge under or around the shaft.

  9. Engine balance - Wikipedia

    en.wikipedia.org/wiki/Engine_balance

    The critical speed. This was defined as the speed at which the unbalanced reciprocating parts reversed the pull of the locomotive. At higher speeds this motion was damped by throttling oil flow in dashpots. The critical speed varied from 95 RPM for a Baldwin tandem compound to over 310 RPM for a Cole compound Atlantic.