When.com Web Search

  1. Ad

    related to: lyman alpha transition bullets reviews

Search results

  1. Results From The WOW.Com Content Network
  2. Lyman-alpha - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha

    Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .

  3. Wouthuysen–Field coupling - Wikipedia

    en.wikipedia.org/wiki/Wouthuysen–Field_coupling

    Wouthuysen–Field coupling is a mechanism that couples the spin temperature of neutral hydrogen to Lyman-alpha radiation, which decouples the neutral hydrogen from the CMB. The energy of the Lyman-alpha transition is 10.2 eV—this energy is approximately two million times greater than the hydrogen line, and is produced by astrophysical ...

  4. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    Old high-precision frequency standards, i.e. hyperfine structure transition-based atomic clocks, may require periodic fine-tuning due to exposure to magnetic fields. This is carried out by measuring the Zeeman effect on specific hyperfine structure transition levels of the source element (cesium) and applying a uniformly precise, low-strength ...

  5. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.

  6. Lyman-alpha forest - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha_forest

    The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. [1] Quasar 4C 05.34 was the farthest object observed to that date, and Lynds noted an unusually large number of absorption lines in its spectrum and suggested that most of the absorption lines were all due to the same Lyman-alpha transition. [2]

  7. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Relativistic corrections (Dirac) to the energy levels of a hydrogen atom from Bohr's model. The fine structure correction predicts that the Lyman-alpha line (emitted in a transition from n = 2 to n = 1) must split into a doublet. The total effect can also be obtained by using the Dirac equation.

  8. Gunn–Peterson trough - Wikipedia

    en.wikipedia.org/wiki/Gunn–Peterson_trough

    The trough is characterized by suppression of electromagnetic emission from the source at wavelengths less than that of the Lyman-alpha line at the redshift of the emitted light. This effect was originally predicted in 1965 by James E. Gunn and Bruce Peterson , [ 1 ] and independently by Peter Scheuer .

  9. Symmetry breaking - Wikipedia

    en.wikipedia.org/wiki/Symmetry_breaking

    The Lyman-alpha line (emitted in a transition from n = 2 to n = 1) splits into a doublet. In explicit symmetry breaking (ESB), the equations of motion describing a system are variant under the broken symmetry.