Search results
Results From The WOW.Com Content Network
NC = P problem The P vs NP problem is a major unsolved question in computer science that asks whether every problem whose solution can be quickly verified by a computer (NP) can also be quickly solved by a computer (P). This question has profound implications for fields such as cryptography, algorithm design, and computational theory.
Project Euler (named after Leonhard Euler) is a website dedicated to a series of computational problems intended to be solved with computer programs. [1] [2] The project attracts graduates and students interested in mathematics and computer programming.
Class of decision problems which contains the hardest problems in NP. Each NP-complete problem has to be in NP. NP-easy At most as hard as NP, but not necessarily in NP. NP-equivalent Decision problems that are both NP-hard and NP-easy, but not necessarily in NP. NP-intermediate If P and NP are different, then there exist decision problems in ...
Whether these problems are not decidable in polynomial time is one of the greatest open questions in computer science (see P versus NP ("P = NP") problem for an in-depth discussion). An important notion in this context is the set of NP-complete decision problems, which is a subset of NP and might be informally described as the "hardest ...
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine [ edit ]
Instead, computer scientists rely on reductions to formally relate the hardness of a new or complicated problem to a computational hardness assumption about a problem that is better-understood. Computational hardness assumptions are of particular importance in cryptography .
The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a problem that is thought to be hard, but is not thought to be NP-complete. This class is called NP-Intermediate problems and exists if and only if P≠NP.
Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.