Search results
Results From The WOW.Com Content Network
English: Complete neuron cell diagram. Neurons (also known as neurones and nerve cells) are electrically excitable cells in the nervous system that process and transmit information. Neurons (also known as neurones and nerve cells) are electrically excitable cells in the nervous system that process and transmit information.
Neuromorphology (from Greek νεῦρον, neuron, "nerve"; μορφή, morphé, "form"; -λογία, -logia, “study of” [1] [2]) is the study of nervous system form, shape, and structure. The study involves looking at a particular part of the nervous system from a molecular and cellular level and connecting it to a physiological and ...
Golgi staining was used by Spanish neuroanatomist Santiago Ramón y Cajal (1852–1934) to discover a number of novel facts about the organization of the nervous system, inspiring the birth of the neuron doctrine. Ultimately, Ramón y Cajal improved the technique by using a method he termed "double impregnation".
Neuronal tracing, or neuron reconstruction is a technique used in neuroscience to determine the pathway of the neurites or neuronal processes, the axons and dendrites, of a neuron. From a sample preparation point of view, it may refer to some of the following as well as other genetic neuron labeling techniques,
A neuron (also known as a neurone or nerve cell) is an excitable cell in the nervous system that processes and transmits information by electrochemical signaling. Neurons are the core components of the brain, spinal cord, and peripheral nerves.
A connectome is constructed by tracing the neuron in a nervous system and mapping where neurons are connected through synapses. The significance of the connectome stems from the realization that the structure and function of the human brain are intricately linked, through multiple levels and modes of brain connectivity.
This makes it the most easily excited part of the neuron and the spike initiation zone for the axon. In electrophysiological terms, it has the most negative threshold potential . While the axon and axon hillock are generally involved in information outflow, this region can also receive input from other neurons.
Sholl also realized his method is useful to determine where and how big is the region where synapses are possible, something he called the neuron's 'connective zone'. [ 1 ] In 1953, Sholl was working with projections of 3-D neurons into two-dimensions, but now Sholl analysis can be done on 3-D images (e.g. image stacks or 3-D montages) of ...