When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    The electrical resistivity of a metallic conductor decreases gradually as temperature is lowered. In normal (that is, non-superconducting) conductors, such as copper or silver, this decrease is limited by impurities and other defects. Even near absolute zero, a real sample of a normal conductor shows some resistance. In a superconductor, the ...

  3. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.

  4. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The effect of temperature on thermal conductivity is different for metals and nonmetals. In metals, heat conductivity is primarily due to free electrons. Following the Wiedemann–Franz law, thermal conductivity of metals is approximately proportional to the absolute temperature (in kelvins) times electrical conductivity. In pure metals the ...

  5. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  6. Temperature coefficient - Wikipedia

    en.wikipedia.org/wiki/Temperature_coefficient

    The temperature dependence of electrical resistance and thus of electronic devices (wires, resistors) has to be taken into account when constructing devices and circuits. The temperature dependence of conductors is to a great degree linear and can be described by the approximation below.

  7. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    The electrical resistance of a uniform conductor is given in terms of resistivity by: [40] = where ℓ is the length of the conductor in SI units of meters, a is the cross-sectional area (for a round wire a = πr 2 if r is radius) in units of meters squared, and ρ is the resistivity in units of ohm·meters.

  8. Electrical resistivities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivities_of...

    As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals

  9. Thermal contact conductance - Wikipedia

    en.wikipedia.org/wiki/Thermal_contact_conductance

    Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials.