Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
The number of ways to choose 3 out of 8 objects or 5 out of 8 objects, if order does not matter. The sum of six consecutive primes (3 + 5 + 7 + 11 + 13 + 17) a tetranacci number [2] and as a multiple of 7 and 8, a pronic number. [3] Interestingly it is one of a few pronic numbers whose digits in decimal also are successive (5 and 6).
[6] For instance, consider division by the regular number 54 = 2 1 3 3. 54 is a divisor of 60 3, and 60 3 /54 = 4000, so dividing by 54 in sexagesimal can be accomplished by multiplying by 4000 and shifting three places. In sexagesimal 4000 = 1×3600 + 6×60 + 40×1, or (as listed by Joyce) 1:6:40.
The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases.
Song of Songs 6 (abbreviated [where?] as Song 6) is the sixth chapter of the Song of Songs in the Hebrew Bible or the Old Testament of the Christian Bible. [1] [2] This book is one of the Five Megillot, a collection of short books, together with Ruth, Lamentations, Ecclesiastes and Esther, within the Ketuvim, the third and the last part of the Hebrew Bible. [3]
In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.
Adding up some subsets of its divisors (e.g., 6, 12, and 18) gives 36; hence, it is also the eighth semiperfect number. [ 7 ] This number is the sum of the cubes of the first three positive integers and also the product of the squares of the first three positive integers.
Since the sum of its divisors (excluding the number itself) 2040 > 840; It is an abundant number and also a superabundant number. [2] It is an idoneal number. [3] It is the least common multiple of the numbers from 1 to 8. [4] It is the smallest number divisible by every natural number from 1 to 10, except 9.