Search results
Results From The WOW.Com Content Network
Response to stimuli: a response can take many forms, from the contraction of a unicellular organism to external chemicals, to complex reactions involving all the senses of multicellular organisms. A response is often expressed by motion; for example, the leaves of a plant turning toward the sun (phototropism), and chemotaxis.
5 cluster (including two chloride ions), one non heme Fe 2+ and two putative Ca 2+ ions per monomer. [4] There are several crystal structures of photosystem II. [5] The PDB accession codes for this protein are 3WU2, 3BZ1, 3BZ2 (3BZ1 and 3BZ2 are monomeric structures of the Photosystem II dimer), [4] 2AXT, 1S5L, 1W5C, 1ILX, 1FE1, 1IZL.
Another way to understand the properties of a linear pathway is to take a more analytical approach. Analytical solutions can be derived for the steady-state if simple mass-action kinetics are assumed. [2] [3] [4] Analytical solutions for the steady-state when assuming Michaelis-Menten kinetics can be obtained [5] [6] but are quite often avoided ...
A diagram of the Hill reaction which shows with the usage of an artificial electron acceptor such as DCPIP, and the chloroplast is subjected to light there is a release of oxygen, Also with the absence of CO 2 there is no sugar production A diagram of the Hill reaction taking place under dark conditions there is no oxygen emitted and the no ...
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
The case for S N 2 reactions is quite different, as the lack of solvation on the nucleophile increases the rate of an S N 2 reaction. In either case (S N 1 or S N 2), the ability to either stabilize the transition state (S N 1) or destabilize the reactant starting material (S N 2) acts to decrease the ΔG ‡ activation and thereby increase the ...
The free radicals generated by this process engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. [6] Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water.
Reaction biocompatibility: Reactions have to be non-toxic and must function in biological conditions taking into account pH, aqueous environments, and temperature. Pharmacokinetics are a growing concern as bioorthogonal chemistry expands to live animal models.