When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.

  3. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  4. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In particular, Pauling introduced the concept of hybridisation, where atomic s and p orbitals are combined to give hybrid sp, sp 2, and sp 3 orbitals. Hybrid orbitals proved powerful in explaining the molecular geometries of simple molecules like methane, which is tetrahedral with an sp 3 carbon atom and bond angles of 109.5° between the four ...

  5. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization. As s orbitals are spherical (and have no directionality) and p orbitals are oriented 90° to each other, a theory was needed to explain why molecules such as methane (CH 4) had ...

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    As with H 2, the lowest energy atomic orbitals are the 1s' and 1s", and do not transform according to the symmetries of the molecule, while the symmetry adapted atomic orbitals do. The symmetric combination—the bonding orbital—is lower in energy than the basis orbitals, and the antisymmetric combination—the antibonding orbital—is higher.

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Also, in 1927, Albrecht Unsöld proved that if one sums the electron density of all orbitals of a particular azimuthal quantum number ℓ of the same shell n (e.g., all three 2p orbitals, or all five 3d orbitals) where each orbital is occupied by an electron or each is occupied by an electron pair, then all angular dependence disappears; that ...

  8. Localized molecular orbitals - Wikipedia

    en.wikipedia.org/wiki/Localized_molecular_orbitals

    Because proper (symmetry-adapted) molecular orbitals are fully delocalized and do not admit a ready correspondence with the "bonds" of the molecule, as visualized by the practicing chemist, the most common approach is to instead consider the interaction between filled and unfilled localized molecular orbitals that correspond to σ bonds, π ...

  9. Natural bond orbital - Wikipedia

    en.wikipedia.org/wiki/Natural_bond_orbital

    In quantum chemistry, a natural bond orbital or NBO is a calculated bonding orbital with maximum electron density.The NBOs are one of a sequence of natural localized orbital sets that include "natural atomic orbitals" (NAO), "natural hybrid orbitals" (NHO), "natural bonding orbitals" (NBO) and "natural (semi-)localized molecular orbitals" (NLMO).