Search results
Results From The WOW.Com Content Network
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
[note 3] The form with a single logarithmic scale eventually developed into such instruments as Fuller's cylindrical slide rule. In about 1622, but not published until 1632, William Oughtred invented linear and circular slide rules which had two logarithmic scales that slid beside each other to perform calculations. In 1654 the linear design ...
In addition to the logarithmic scales, some slide rules have other mathematical functions encoded on other auxiliary scales. The most popular are trigonometric, usually sine and tangent, common logarithm (log 10) (for taking the log of a value on a multiplier scale), natural logarithm (ln) and exponential (e x) scales.
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Exponentiation is when a number b, the base, is raised to a certain power y, the exponent, to give a value x; this is denoted =. For example, raising 2 to the power of 3 gives 8: = The logarithm of base b is the inverse operation, that provides the output y from the input x.
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
Since the common logarithm of a power of 10 is exactly the exponent, the characteristic is an integer number, which makes the common logarithm exceptionally useful in dealing with decimal numbers. For positive numbers less than 1, the characteristic makes the resulting logarithm negative, as required. [ 38 ]