Search results
Results From The WOW.Com Content Network
The regular dodecagon is the Petrie polygon for many higher-dimensional polytopes, seen as orthogonal projections in Coxeter planes. Examples in 4 dimensions are the 24-cell, snub 24-cell, 6-6 duoprism, 6-6 duopyramid. In 6 dimensions 6-cube, 6-orthoplex, 2 21, 1 22. It is also the Petrie polygon for the grand 120-cell and great stellated 120-cell.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides
Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
The regular dodecahedron can be found in many popular cultures: Roman dodecahedron, the children's story, toys, and painting arts. It can also be found in nature and supramolecules, as well as the shape of the universe. The skeleton of a regular dodecahedron can be represented as the graph called the dodecahedral graph, a Platonic graph.
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
The following other wikis use this file: Usage on ar.wikipedia.org فضاء ثنائي الأبعاد; Usage on ba.wikipedia.org Ике үлсәмле арауыҡ
A skew decagon is a skew polygon with 10 vertices and edges but not existing on the same plane. The interior of such a decagon is not generally defined. A skew zig-zag decagon has vertices alternating between two parallel planes. A regular skew decagon is vertex-transitive with equal edge lengths.