Ad
related to: riemannian manifold formulas
Search results
Results From The WOW.Com Content Network
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.
If a complete Riemannian manifold has positive Ricci curvature then its fundamental group is finite. Bochner's formula. If a compact Riemannian n-manifold has non-negative Ricci curvature, then its first Betti number is at most n, with equality if and only if the Riemannian manifold is a flat torus. Splitting theorem.
An extension of the fundamental theorem states that given a pseudo-Riemannian manifold there is a unique connection preserving the metric tensor, with any given vector-valued 2-form as its torsion. The difference between an arbitrary connection (with torsion) and the corresponding Levi-Civita connection is the contorsion tensor .
Simons' formula; Spin(7)-manifold; Spin structure; Sub-Riemannian manifold; V. Volume form This page was last edited on 5 September 2022, at 16:24 ...
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
The first variation of area formula is a fundamental computation for how this quantity is affected by the deformation of the submanifold. The fundamental quantity is to do with the mean curvature . Let ( M , g ) denote a Riemannian manifold, and consider an oriented smooth manifold S (possibly with boundary) together with a one-parameter family ...
In mathematics, Bochner's formula is a statement relating harmonic functions on a Riemannian manifold (,) to the Ricci curvature. The formula is named after the American mathematician Salomon Bochner .