Ad
related to: perovskite vs silicon dioxide
Search results
Results From The WOW.Com Content Network
Perovskite (pronunciation: / p ə ˈ r ɒ v s k aɪ t /) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula Ca Ti O 3).Its name is also applied to the class of compounds which have the same type of crystal structure as CaTiO 3, known as the perovskite structure, which has a general chemical formula A 2+ B 4+ (X 2−) 3. [6]
The perovskite structure (first identified in the mineral perovskite) occurs in substances with the general formula ABX 3, where A is a metal that forms large cations, typically magnesium, ferrous iron, or calcium. B is another metal that forms smaller cations, typically silicon, although minor amounts of ferric iron and aluminum can occur. X ...
A perovskite is any material of formula ABX 3 with a crystal structure similar to that of the mineral perovskite, which consists of calcium titanium oxide (CaTiO 3). [2] The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856).
Crystal structure of CH 3 NH 3 PbX 3 perovskites (X=I, Br and/or Cl). The methylammonium cation (CH 3 NH 3 +) is surrounded by PbX 6 octahedra. [13]The name "perovskite solar cell" is derived from the ABX 3 crystal structure of the absorber materials, referred to as perovskite structure, where A and B are cations and X is an anion.
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO 2, commonly found in nature as quartz. [5] [6] In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant families of materials, existing as a compound of several minerals and as a synthetic product.
Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen [77 K (−196.2 °C; −321.1 °F)] at about 93 K (−180.2 °C; −292.3 °F).
Antiperovskites (or inverse perovskites) is a type of crystal structure similar to the perovskite structure that is common in nature. [1] The key difference is that the positions of the cation and anion constituents are reversed in the unit cell structure. In contrast to perovskite, antiperovskite compounds consist of two types of anions ...
Schematic representation of the different stages and routes of the sol–gel technology. In this chemical procedure, a "sol" (a colloidal solution) is formed that then gradually evolves towards the formation of a gel-like diphasic system containing both a liquid phase and solid phase whose morphologies range from discrete particles to continuous polymer networks.