Search results
Results From The WOW.Com Content Network
Values greater than 5/9 may indicate a bimodal or multimodal distribution, though corresponding values can also result for heavily skewed unimodal distributions. [28] The maximum value (1.0) is reached only by a Bernoulli distribution with only two distinct values or the sum of two different Dirac delta functions (a bi-delta distribution).
A histogram is a visual representation of the distribution of quantitative data. ... "skewed left" or "right", "unimodal", "bimodal" or "multimodal". Symmetric, unimodal.
A bimodal distribution would have two high points rather than one. The shape of a distribution is sometimes characterised by the behaviours of the tails (as in a long or short tail). For example, a flat distribution can be said either to have no tails, or to have short tails.
The Lévy skew alpha-stable distribution or stable distribution is a family of distributions often used to characterize financial data and critical behavior; the Cauchy distribution, Holtsmark distribution, Landau distribution, Lévy distribution and normal distribution are special cases. The Linnik distribution; The logistic distribution
In the older notion of nonparametric skew, defined as () /, where is the mean, is the median, and is the standard deviation, the skewness is defined in terms of this relationship: positive/right nonparametric skew means the mean is greater than (to the right of) the median, while negative/left nonparametric skew means the mean is less than (to ...
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The definition of "unimodal" was extended to functions of real numbers as well. A common definition is as follows: a function f(x) is a unimodal function if for some value m, it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the maximum value of f(x) is f(m) and there are no other local maxima.
When the smaller values tend to be farther away from the mean than the larger values, one has a skew distribution to the left (i.e. there is negative skewness), one may for example select the square-normal distribution (i.e. the normal distribution applied to the square of the data values), [1] the inverted (mirrored) Gumbel distribution, [1 ...