Search results
Results From The WOW.Com Content Network
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
The pH meter is usually calibrated with buffer solutions at known pH values before starting the titration. The ionic strength can be kept constant by judicious choice of acid and base. For instance, HCl titrated with NaOH of approximately the same concentration will replace H + with an ion (Na + ) of the same charge at the same concentration ...
Note that when an acid neutralizes a base, the pH may or may not be neutral (pH = 7). The pH depends on the strengths of the acid and base. In the case of a weak acid and strong base titration, the pH is greater than 7 at the equivalence point. Thus pH can be calculated using the following formula: [1]
If one reagent is a weak acid or base and the other is a strong acid or base, the titration curve is irregular and the pH shifts less with small additions of titrant near the equivalence point. For example, the titration curve for the titration between oxalic acid (a weak acid) and sodium hydroxide (a strong base) is
A typical titration curve of a diprotic acid, oxalic acid, titrated with a strong base, sodium hydroxide.Both equivalence points are visible. Titrations are often recorded on graphs called titration curves, which generally contain the volume of the titrant as the independent variable and the pH of the solution as the dependent variable (because it changes depending on the composition of the ...
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [2] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [3]
In chemistry, acid value (AV, acid number, neutralization number or acidity) is a number used to quantify the acidity of a given chemical substance.It is the quantity of base (usually potassium hydroxide (KOH)), expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.
From the titration of protonatable group, one can read the so-called pK a 1 ⁄ 2 which is equal to the pH value where the group is half-protonated (i.e. when 50% such groups would be protonated). The pK a 1 ⁄ 2 is equal to the Henderson–Hasselbalch pK a (pK HH a) if the titration curve follows the Henderson–Hasselbalch equation. [14]