When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

    Markov chain quasi-Monte Carlo methods [19] [20] such as the Array–RQMC method combine randomized quasi–Monte Carlo and Markov chain simulation by simulating chains simultaneously in a way that better approximates the true distribution of the chain than with ordinary MCMC. [21]

  3. MCSim - Wikipedia

    en.wikipedia.org/wiki/MCSim

    GNU MCSim is a suite of simulation software. It allows one to design one's own statistical or simulation models, perform Monte Carlo simulations, and Bayesian inference through (tempered) Markov chain Monte Carlo simulations. The latest version allows parallel computing of Monte Carlo or MCMC simulations.

  4. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    These models can also be seen as the evolution of the law of the random states of a nonlinear Markov chain. [10] [11] A natural way to simulate these sophisticated nonlinear Markov processes is to sample multiple copies of the process, replacing in the evolution equation the unknown distributions of the random states by the sampled empirical ...

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    They provide the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability distributions, and have found application in areas including Bayesian statistics, biology, chemistry, economics, finance, information theory, physics, signal processing, and speech ...

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  7. Metropolis–Hastings algorithm - Wikipedia

    en.wikipedia.org/wiki/Metropolis–Hastings...

    The Metropolis-Hastings algorithm sampling a normal one-dimensional posterior probability distribution.. In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult.

  8. Mean-field particle methods - Wikipedia

    en.wikipedia.org/wiki/Mean-field_particle_methods

    New classes of mean field particle simulation techniques for Feynman-Kac path-integration problems includes genealogical tree based models, [2] [3] [57] backward particle models, [2] [58] adaptive mean field particle models, [59] island type particle models, [60] [61] and particle Markov chain Monte Carlo methods [62] [63]

  9. Reversible-jump Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Reversible-jump_Markov...

    In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology, introduced by Peter Green, which allows simulation (the creation of samples) of the posterior distribution on spaces of varying dimensions. [1]