Search results
Results From The WOW.Com Content Network
The binomial pricing model traces the evolution of the option's key underlying variables in discrete-time. This is done by means of a binomial lattice (Tree), for a number of time steps between the valuation and expiration dates. Each node in the lattice represents a possible price of the underlying at a given point in time.
discount recursively through the tree using the rate at each node, i.e. via "backwards induction", from the time-step in question to the first node in the tree (i.e. i=0); repeat until the discounted value at the first node in the tree equals the zero-price corresponding to the given spot interest rate for the i-th time-step. Step 2.
Delta and gamma, being sensitivities of option value w.r.t. price, are approximated given differences between option prices – with their related spot – in the same time step. Theta, sensitivity to time, is likewise estimated given the option price at the first node in the tree and the option price for the same spot in a later time step ...
Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.
In finance, a price (premium) is paid or received for purchasing or selling options.This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.
The model starts with a binomial tree of discrete future possible underlying stock prices. By constructing a riskless portfolio of an option and stock (as in the Black–Scholes model) a simple formula can be used to find the option price at each node in the tree.
Derman and Kani described and implemented a local volatility function to model instantaneous volatility. They used this function at each node in a binomial options pricing model. The tree successfully produced option valuations consistent with all market prices across strikes and expirations. [2]
John Hull and Alan White, "The pricing of options on interest rate caps and floors using the Hull–White model" in Advanced Strategies in Financial Risk Management, Chapter 4, pp. 59–67. John Hull and Alan White, "One factor interest rate models and the valuation of interest rate derivative securities," Journal of Financial and Quantitative ...