When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    The binomial pricing model traces the evolution of the option's key underlying variables in discrete-time. This is done by means of a binomial lattice (Tree), for a number of time steps between the valuation and expiration dates. Each node in the lattice represents a possible price of the underlying at a given point in time.

  3. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.

  4. Black–Derman–Toy model - Wikipedia

    en.wikipedia.org/wiki/Black–Derman–Toy_model

    discount recursively through the tree using the rate at each node, i.e. via "backwards induction", from the time-step in question to the first node in the tree (i.e. i=0); repeat until the discounted value at the first node in the tree equals the zero-price corresponding to the given spot interest rate for the i-th time-step. Step 2.

  5. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    Delta and gamma, being sensitivities of option value w.r.t. price, are approximated given differences between option prices – with their related spot – in the same time step. Theta, sensitivity to time, is likewise estimated given the option price at the first node in the tree and the option price for the same spot in a later time step ...

  6. Local volatility - Wikipedia

    en.wikipedia.org/wiki/Local_volatility

    Derman and Kani described and implemented a local volatility function to model instantaneous volatility. They used this function at each node in a binomial options pricing model. The tree successfully produced option valuations consistent with all market prices across strikes and expirations. [2]

  7. How implied volatility works with options trading

    www.aol.com/finance/implied-volatility-works...

    An option’s implied volatility (IV) gauges the market’s expectation of the underlying stock’s future price swings, but it doesn’t predict the direction of those movements.

  8. Trinomial tree - Wikipedia

    en.wikipedia.org/wiki/Trinomial_Tree

    The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...

  9. Option (finance) - Wikipedia

    en.wikipedia.org/wiki/Option_(finance)

    The model starts with a binomial tree of discrete future possible underlying stock prices. By constructing a riskless portfolio of an option and stock (as in the Black–Scholes model) a simple formula can be used to find the option price at each node in the tree.