Search results
Results From The WOW.Com Content Network
Circular molecules of DNA, such as plasmids and typical mitochondrial genomes, consist of two strands of DNA called the heavy strand (or H-strand) and the light strand (or L-strand). The two strands have different masses due to different proportions of heavier nucleotides .
Mitochondrial DNA (mtDNA and mDNA) is the DNA located in the mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of the DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus , and, in plants and algae, the DNA also is ...
In humans, mitochondrial DNA (mtDNA) forms closed circular molecules that contain 16,569 [4] [5] DNA base pairs, [6] with each such molecule normally containing a full set of the mitochondrial genes. Each human mitochondrion contains, on average, approximately 5 such mtDNA molecules, with the quantity ranging between 1 and 15. [ 6 ]
This strand is called the H (heavy) strand. The L (light) strand comprises lighter nucleotides (pyrimidines: thymine and cytosine). Replication begins with replication of the heavy strand starting at the D-loop (also known as the control region). A D-loop is a short portion in circular DNA that has three strands instead of two.
One of the two mitochondrial DNA (mtDNA) strands has a disproportionately higher ratio of the heavier nucleotides adenine and guanine, and this is termed the heavy strand (or H strand), whereas the other strand is termed the light strand (or L strand).
Location of the MT-RNR2 gene on the H strand of the human mitochondrial genome. MT-RNR2, or RRNL, is one of the two mitochondrial ribosomal RNA genes (blue boxes). Mitochondrially encoded 16S RNA (often abbreviated as 16S) is the mitochondrial large subunit ribosomal RNA [1] [2] that in humans is encoded by the MT-RNR2 gene.
The mtDNA control region is an area of the mitochondrial genome which is non-coding DNA. This region controls RNA and DNA synthesis. [1] It is the most polymorphic region of the human mtDNA genome, [2] with polymorphism concentrated in hypervariable regions. The average nucleotide diversity in these regions is 1.7%. [3]
Triple-stranded DNA (also known as H-DNA or Triplex-DNA) is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA (via Watson–Crick base-pairing ) double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.