Search results
Results From The WOW.Com Content Network
In computing, natural sort order (or natural sorting) is the ordering of strings in alphabetical order, except that multi-digit numbers are treated atomically, i.e., as if they were a single character. Natural sort order has been promoted as being more human-friendly ("natural") than machine-oriented, pure alphabetical sort order. [1]
An important property of the lexicographical order is that for each n, the set of words of length n is well-ordered by the lexicographical order (provided the alphabet is finite); that is, every decreasing sequence of words of length n is finite (or equivalently, every non-empty subset has a least element). [1] [2] It is not true that the set ...
A Byte of Python: Author: Swaroop C H: Software used: DocBook XSL Stylesheets with Apache FOP: Conversion program: Apache FOP Version 1.1: Encrypted: no: Page size: 595.275 x 841.889 pts (A4) Version of PDF format: 1.4
The largest element of the first run is 10 and it would have to be added at the fifth position of the second run in order to preserve its order. Therefore, [1, 2, 3] and [12, 14, 17] are already in their final positions and the runs in which elements movements are required are [6, 10] and [4, 5, 7, 9].
Many systems of collation are based on numerical order or alphabetical order, or extensions and combinations thereof. Collation is a fundamental element of most office filing systems, library catalogs, and reference books. Collation differs from classification in that the classes themselves are not necessarily ordered.
Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
The 1s bin boundary is placed after the last array element. The most significant bit of the first array element is examined. If this bit is a 1, then the first element is swapped with the element in front of the 1s bin boundary (the last element of the array), and the 1s bin is grown by one element by decrementing the 1s boundary array index.