When.com Web Search

  1. Ad

    related to: hyperbola parabola ellipse circle equation examples geometry pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga 's systematic work on their properties.

  3. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This is the equation of an ellipse (<) or a parabola (=) or a hyperbola (>). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram).

  5. Director circle - Wikipedia

    en.wikipedia.org/wiki/Director_circle

    An ellipse, its minimum bounding box, and its director circle. In geometry , the director circle of an ellipse or hyperbola (also called the orthoptic circle or Fermat–Apollonius circle ) is a circle consisting of all points where two perpendicular tangent lines to the ellipse or hyperbola cross each other.

  6. Gallery of curves - Wikipedia

    en.wikipedia.org/wiki/Gallery_of_curves

    Download as PDF; Printable version; In other projects ... Circle. Ellipse. Parabola. ... Cubic with double point. Strophoid. Semicubical parabola. Serpentine curve ...

  7. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the

  8. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    Examples: The orthoptic of a parabola is its directrix (proof: see below),; The orthoptic of an ellipse + = is the director circle + = + (see below),; The orthoptic of a hyperbola =, > is the director circle + = (in case of a ≤ b there are no orthogonal tangents, see below),

  9. Triangle conic - Wikipedia

    en.wikipedia.org/wiki/Triangle_conic

    Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two ...