Search results
Results From The WOW.Com Content Network
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
The first Project Euler problem is Multiples of 3 and 5. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. It is a 5% rated problem, indicating it is one of the easiest on the site.
The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a problem that is thought to be hard, but is not thought to be NP-complete. This class is called NP-Intermediate problems and exists if and only if P≠NP.
Download QR code; Print/export Download as PDF; Printable version; In other projects ... Pages in category "Unsolved problems in computer science"
Whether these problems are not decidable in polynomial time is one of the greatest open questions in computer science (see P versus NP ("P = NP") problem for an in-depth discussion). An important notion in this context is the set of NP-complete decision problems, which is a subset of NP and might be informally described as the "hardest ...
For now, you can take a crack at the hardest math problems known to man, woman, and machine. For more puzzles and brainteasers, check out Puzzmo . More from Popular Mechanics :
Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.
Class of decision problems which contains the hardest problems in NP. Each NP-complete problem has to be in NP. NP-easy At most as hard as NP, but not necessarily in NP. NP-equivalent Decision problems that are both NP-hard and NP-easy, but not necessarily in NP. NP-intermediate If P and NP are different, then there exist decision problems in ...