Ads
related to: online oblique asymptote calculator equation generator
Search results
Results From The WOW.Com Content Network
In the first case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to +∞, and in the second case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to −∞. An example is ƒ(x) = x + 1/x, which has the oblique asymptote y = x (that is m = 1, n = 0) as seen in the limits
In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. . Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and phy
From the Hesse normal form + = of the asymptotes and the equation of the hyperbola one gets: [17] ( 2 ) {\displaystyle {\color {magenta}{(2)}}} The product of the distances from a point on the hyperbola to both the asymptotes is the constant a 2 b 2 a 2 + b 2 , {\displaystyle {\tfrac {a^{2}b^{2}}{a^{2}+b^{2}}}\ ,} which can also be written in ...
The Cartesian equation is = / (+). The curve resembles the Folium of Descartes [1] and the line x = –a is an asymptote to two branches. The curve has two more asymptotes, in the plane with complex coordinates, given by =.
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .
The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation =, known as the Airy equation or the Stokes equation. Because the solution of the linear differential equation d 2 y d x 2 − k y = 0 {\displaystyle {\frac {d^{2}y}{dx^{2}}}-ky=0} is oscillatory for k <0 and exponential for k >0 ...
Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates , the equation is represented by a hyperbola ; solutions occur wherever the curve passes through a point whose x and y ...
First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.